Advances in Thin Film Technology: Emerging Materials, Methods, and Applications

Smt. Jyoti N Handral Research Scholar, Dept. of Physics, Shri JJT University, Rajasthan Jyotireddy7575@gmail.com

ISSN: 2395-6968

Dr.Ayub N.Chattarki Associate professor in Physics and Principal in Anjuman Arts, Science and Commerce & P.G. Studies in English, Vijayapur. 586102.

Abstract:

Page 47

Thin film technology has emerged as a cornerstone in modern materials science, driving innovations across electronics, optics. and biomedical applications. Recent advances focus on the development of novel materials, including organic-inorganic hybrids, perovskites, and two-dimensional (2D) materials, which offer enhanced electrical, optical, and mechanical properties. Parallelly, innovative fabrication techniquessuch as atomic layer deposition, chemical vapor deposition, spin coating, and pulsed laser depositionenable precise control over film thickness, morphology, and composition, optimizing thereby performance specific applications. **Emerging** applications high-efficiency span

Impact Factor: 5.042

photovoltaics, flexible and wearable electronics, sensors, and energy storage devices, reflecting the versatility of thin films. This article reviews the latest material innovations. deposition and their functional strategies, applications, highlighting trends, challenges, and future research directions. By integrating materials science and process engineering, thin film technology continues to redefine the landscape of high-performance devices, paving the way for sustainable and next-generation technological solutions.

Keywords: Thin FilmTechnology, **Emerging** Materials. **Deposition** Techniques, Nanostructured Coatings, Optoelectronic Applications.

Introduction

Thin film technology has emerged as a pivotal area of research in modern material science and engineering due to its transformative applications across electronics, energy, optics, and biomedical devices. By definition, thin films are layers of material ranging from a few nanometres to several micrometers in thickness, deposited onto substrates to achieve desired physical, chemical, or electrical properties. Their unique characteristics, such as high surface-to-volume ratio, tunable optical and electrical behavior, and the potential for integration with diverse substrates, make them indispensable in next-generation technological solutions.

Recent years have witnessed significant advances in thin film materials, driven by the need for higher performance, reduced cost, and enhanced sustainability. Emerging materials such as perovskites, two-dimensional (2D) materials like graphene and transition metal dichalcogenides, metal-organic frameworks, and nanocomposite coatings have demonstrated remarkable properties including superior conductivity, light absorption, mechanical flexibility, and chemical stability. These materials are enabling innovations in solar cells, flexible electronics, sensors, photodetectors, and protective coatings.

Parallel to material development, deposition methods have evolved to achieve precise control over film thickness, morphology, and composition. Techniques such as chemical vapor deposition (CVD), atomic layer deposition (ALD), pulsed laser deposition (PLD), sputtering, and solution-based methods provide tunable, scalable, and cost-effective approaches for high-quality thin films. Recent innovations in hybrid deposition techniques and additive manufacturing have further enhanced the adaptability of thin films to complex and flexible substrates, expanding their application scope.

Moreover, the integration of advanced characterization techniques, including in-situ spectroscopy, electron microscopy, and surface analysis, has accelerated understanding of thin film growth mechanisms and interface engineering. This knowledge underpins the optimization of performance, reliability, and lifespan of thin-film-based devices.

Given the interdisciplinary nature of thin film research, the field continues to evolve rapidly, bridging materials science, physics, chemistry, and engineering. This article aims to provide a comprehensive review of emerging materials, novel deposition methodologies, and cutting-edge applications, highlighting the trends and challenges that define the current and future landscape of thin film technology. The insights presented will serve as a foundation for future innovations in both industrial and academic domains.

Review of Literature

Thin-film research prior to 2021 concentrated on three tightly linked fronts: novel active materials (halide perovskites, 2D materials, graphene derivatives, metal-oxides), refinement of deposition/growth methods (solution processing, CVD, PVD, and targeted low-temperature routes), and device integration (photovoltaics, thin-film transistors, sensors). Landmark reviews and papers from the 2010s synthesized rapid progress and persistent challenges.

Halide perovskites emerged as a transformative thin-film class. Early experimental breakthroughs (e.g., Lee et al., 2012) established solution-processed perovskite absorbers for high-efficiency solar cells; subsequent critical reviews charted the materials' chemistry, film-formation routes, and stability issues. Dunlap-Shohl et al. (2018) provided a comprehensive chemical-centric review of synthetic approaches for halide perovskite thin films, emphasizing solvent engineering, precursor design, and crystallization control as keys to reproducible, high-quality films. Parallel perspectives by Snaith and colleagues summarized the rapid efficiency gains and outlined the major scaling and stability barriers for commercialization. These works collectively positioned perovskites as a paradigmatic example of how chemistry + processing controls film microstructure and device performance.

Two-dimensional (2D) transition-metal dichalcogenides (TMDs), particularly MoS₂, also received intense pre-2021 attention. Reviews by Li (2015) and Sun (2017) catalogued top-down (exfoliation) and bottom-up (CVD, sulfurization) synthesis methods, and critically discussed the tradeoffs between large-area continuity versus defect control. These studies emphasized that scalable, low-defect growth (e.g., optimized CVD) was essential for transferring intrinsic 2D properties into thin-film devices such as photodetectors and flexible electronics.

Graphene and graphene-oxide thin films were highlighted for barrier, electrode, and flexible-electronics roles. Early device demonstrations showed solution-processed GO/rGO films functioning as transparent electrodes and ultra barriers; reviews and experimental reports across the 2010-2016 period documented methods to control interlayer spacing, reduction state, and defect density to tune electrical and barrier properties for encapsulation and flexible device integration.

On the deposition side, surveys and comparative reviews before 2021 mapped the strengths and limits of major routes: PVD (evaporation, sputtering, PLD) for stoichiometric control and uniform inorganic films; CVD for large-area 2D growth; and solution/printing methods (spin-

coating, blade-coating, inkjet) for low-cost, scalable organic and hybrid films. Authors such as Abegunde (2019) and Yunus (2020) synthesized literature comparing film quality, throughput, thermal budget, and device-level outcomes - highlighting that method choice is dictated by the target material system and application (e.g., high-quality III-V films vs. printed organics).

Device-level literature prior to 2021 demonstrated significant maturation: organic and inorganic thin-film transistors (OTFTs/ITFTs) reached practical mobilities and stability through molecular design and interface engineering (Klauk, 2010; subsequent OTFT reviews), while perovskite thin-film photovoltaics moved from single-digit to >20% lab efficiencies within a decade, driven by film-formation control and interfacial passivation strategies.

Objectives

- To review the latest advancements in thin film materials, including organic, inorganic, and hybrid composites, and analyse their unique physical, chemical, and optical properties.
- To explore emerging deposition and fabrication methods, such as atomic layer deposition, chemical vapor deposition, sputtering, and solution-based techniques, emphasizing efficiency, scalability, and cost-effectiveness.
- To investigate the role of Nano structuring and material engineering in enhancing the performance and functionality of thin films across diverse applications.
- To assess the integration of thin films in advanced devices, including photovoltaics, sensors, flexible electronics, optoelectronics, and energy storage systems.
- To evaluate challenges and limitations in thin film technology, such as durability, stability, and environmental impact, and identify potential strategies to overcome these hurdles.
- To highlight future research directions and emerging trends for sustainable, highperformance thin film applications in next-generation technologies.

Data Collection and Methodology

This study adopts a secondary data approach to analyse advancements in thin film technology, emphasizing emerging materials, deposition methods, and applications. Relevant data were systematically collected from peer-reviewed journals, conference proceedings, patents, and authoritative technical reports spanning the last decade. Databases such as ScienceDirect, IEEE Xplore, Scopus, Web of Science, and SpringerLink were extensively

used to ensure the inclusion of high-quality and up-to-date research findings. Key metrics, including material properties, deposition techniques, efficiency parameters, and applicationspecific performance, were extracted and organized for comparative analysis. The methodology involved a comprehensive literature review with qualitative synthesis and critical evaluation, highlighting trends, challenges, and innovations in thin film fabrication and utilization. Emphasis was placed on cross-referencing multiple sources to validate findings and identify emerging directions in optoelectronic devices, photovoltaics, sensors, and flexible electronics, providing a robust foundation for understanding technological progress and future research potential.

Discussion and Interpretation

Thin film technology has emerged as a pivotal area of research and industrial application in the last few decades. Thin films are materials with thicknesses ranging from a few nanometres to several micrometers, engineered to display specific physical, chemical, and electronic properties. These films are essential in shaping the modern technological landscape, as they enable innovations across electronics, energy, healthcare, and environmental monitoring. The importance of thin film technology lies in its ability to tailor material properties such as conductivity, transparency, magnetism, optical absorption, and mechanical strength through precise control over thickness, morphology, and composition.

The applications of thin films span multiple sectors. In electronics, they are fundamental to semiconductor devices, memory storage, transistors, and flexible electronics. In energy, thin films are used in solar cells, batteries, and supercapacitors, enhancing energy conversion efficiency and storage capacity. In healthcare, thin-film-based biosensors and drug delivery systems enable rapid diagnostics and targeted therapies. Environmental monitoring also benefits from thin-film sensors capable of detecting pollutants and chemical changes at ultralow concentrations. The versatility of thin films is further amplified by emerging materials and deposition techniques that enable high-performance, low-cost, and scalable solutions.

Recent research trends focus on the development of two-dimensional (2D) materials like graphene, molybdenum disulfide (MoS₂), and hexagonal boron nitride (h-BN); metal-oxide thin films for neuromorphic devices; and organic, polymer, and degradable thin films aimed at sustainable electronics. Advances in deposition methods such as atomic layer deposition (ALD), chemical vapor deposition (CVD), spin coating, and pulsed laser deposition allow precise control over film thickness, composition, and uniformity. These developments are

Impact Factor: 5.042

driving the creation of next-generation devices with enhanced performance, lower energy consumption, and novel functionalities.

Emerging Materials

2D Materials (MoS₂, Graphene, h-BN)

Two-dimensional (2D) materials have revolutionized thin-film technology due to their exceptional electronic, optical, and mechanical properties. Graphene, a single layer of carbon atoms arranged in a hexagonal lattice, exhibits extraordinary electrical conductivity, thermal conductivity, and mechanical strength. Its high electron mobility makes it ideal for transistors, transparent conductive electrodes, and flexible electronics.

Molybdenum disulfide (MoS₂) is a semiconducting 2D material with a direct bandgap in its monolayer form, which is essential for applications in field-effect transistors (FETs), photodetectors, and energy storage devices. Integration of MoS₂ onto silicon chips has enabled devices with ultrafast read/write speeds (~20 ns), high endurance (>100,000 cycles), and ultra-low energy consumption (~0.644 pJ/bit).

Hexagonal boron nitride (h-BN) serves as an insulating 2D material with high thermal stability and chemical inertness, often used as a dielectric layer in heterostructure devices alongside graphene or MoS₂. Stacking these materials enables van der Waals heterostructures with tunable electronic and optical properties.

Metal-Oxide Thin Films

Metal-oxide thin films, including ZnO, TiO₂, and In₂O₃, are widely used in optoelectronic, sensor, and neuromorphic devices. Their high transparency, tunable bandgap, and electron mobility make them suitable for transparent electronics, memristors, and resistive switching memory devices. Nano structuring these films into nanowires or nanoparticles enhances surface area, improving sensor sensitivity and catalytic activity.

Neuromorphic applications mimic neural networks using resistive switching in metal-oxide thin films. These films demonstrate high endurance, low switching voltage, and rapid response times, making them promising candidates for next-generation memory and computing systems.

Organic, Polymer, and Degradable/Dissolvable Thin Films

Organic and polymer thin films, such as PEDOT: PSS, P3HT, and polylactic acid-based films, are widely utilized in organic electronics, flexible devices, and sensors. They offer

advantages like lightweight, mechanical flexibility, low-temperature processing, and low-cost manufacturing.

Degradable and dissolvable thin films are being developed to address electronic waste challenges. These films, made from biodegradable polymers or soluble materials, are designed to degrade after their operational life, enabling transient electronics for biomedical implants, environmental sensors, and temporary devices.

Table 1: Comparison of Emerging Thin Film Materials

Material	Thickness	Key Property	Application
Graphene	0.34 nm	High conductivity, flexibility	Flexible electronics, electrodes
MoS ₂	~0.65 nm	Semiconducting, direct bandgap	FETs, photodetectors, memory devices
h-BN	~0.33 nm	Insulating, thermal stability	Dielectric layers, heterostructures
ZnO	50–200 nm	Transparent, tunable bandgap	Sensors, transparent electronics
TiO ₂	30–150 nm	Photocatalytic, UV absorption	Solar cells, photodetectors
PEDOT: PSS	50–200 nm	Conductive polymer, flexible	Organic electronics, flexible devices
Polylactic acid films	100–500 nm	Biodegradable, soluble	Transient electronics, bio- implants

Advanced Deposition Techniques

Atomic Layer Deposition (ALD)

ALD is a sequential, self-limiting process that deposits monolayers of material with atomic precision. This technique ensures uniform coverage over complex 3D substrates, making it ideal for advanced semiconductors, high-k dielectrics, and protective coatings. ALD enables excellent control over film thickness and composition, critical for nanoelectronics and flexible devices.

Chemical Vapor Deposition (CVD)

Impact Factor: 5.042

CVD is widely employed to deposit high-purity films like graphene, MoS₂, and silicon nitride. The process involves chemical reactions of gaseous precursors on a heated substrate, producing thin films with high crystallinity and minimal defects. CVD is essential in semiconductor device fabrication, photovoltaics, and coatings for energy applications.

Solution-Based Techniques

Spin coating, dip coating, and inkjet printing provide low-cost, scalable routes to deposit thin films over large areas. Spin coating is particularly used in organic solar cells and flexible electronics, while dip coating enables conformal coatings on complex geometries. These techniques are widely used for polymer, organic, and hybrid thin films.

Other Deposition Methods

- Sputtering: Physical vapor deposition where energetic ions eject target material onto substrates, widely used for metallic and transparent oxide films.
- Pulsed Laser Deposition (PLD): Uses high-energy laser pulses to ablate target material, ideal for complex oxides.
- Molecular Beam Epitaxy (MBE): High-precision deposition for single-crystal films, crucial in quantum devices.

Applications of Thin Films

Electronics and Semiconductors

Thin films are central to modern electronics. Integration of 2D materials such as graphene and MoS₂ on silicon substrates has led to high-performance transistors, memory devices, and flexible electronics. Thin-film transistors (TFTs) offer low power consumption, transparency, and mechanical flexibility, essential for wearable devices and flexible displays. Metal-oxide films in resistive switching devices enable neuromorphic computing, mimicking synaptic functions with high efficiency.

Energy Harvesting and Storage

Thin films are widely employed in energy conversion and storage. Organic and inorganic thin-film solar cells provide lightweight, flexible alternatives to traditional silicon panels. Metal-oxide and perovskite thin films have improved photon absorption and charge transport efficiency. In energy storage, thin films in batteries and supercapacitors enable rapid charging, high energy density, and long cycle life. Flexible thin-film energy devices are particularly relevant for portable electronics and wearable applications.

Healthcare and Environmental Sensors

Thin films are integral to biosensors and environmental monitoring. Metal nanoparticle-based films detect biomolecules, pathogens, and chemical pollutants at ultra-low concentrations. Organic and polymer films enable flexible, biocompatible devices for in-vivo diagnostics.

Environmental thin-film sensors monitor air and water quality, offering rapid, real-time detection.

Table 2: Applications of Thin Films in Different Sectors

Material	Application	Performance Metrics
Graphene	Flexible electrodes	Conductivity: 10 ⁶ S/m, transparency: 97%
MoS ₂	FETs, memory	Switching speed: 20 ns, endurance: >10 ⁵ cycles
TiO ₂	Solar cells	Efficiency: 15–20%, stability >1000 h
ZnO	Gas sensors	Sensitivity: ppb-level, response time: <10 s
PEDOT: PSS	Flexible electronics	Sheet resistance: 100 Ω/sq, flexibility >10,000 cycles
Polylactic acid	Transient bio-implants	Dissolution: within 30 days, biocompatibility: high

Challenges and Future Directions

Impact Factor: 5.042

Despite significant advancements, thin film technology faces challenges. Scalability and cost-effectiveness remain primary barriers, as high-precision deposition methods like ALD and MBE are expensive and slow. Solution-based techniques and roll-to-roll processing offer potential solutions for large-area, low-cost production.

Material stability and reliability are crucial for real-world applications, especially under harsh environmental conditions. Research is ongoing to enhance durability through protective coatings, composite materials, and optimized deposition conditions.

Integration with existing devices is another challenge, as novel thin films must be compatible with conventional semiconductors and flexible electronics. Hybrid thin films combining 2D materials, metal oxides, and polymers may offer tailored functionality while maintaining device compatibility.

Future directions include flexible electronics, wearable energy harvesters, and sustainable materials for eco-friendly electronics. Novel hybrid structures, heterostructures, and transient devices are expected to push thin film technology toward next-generation applications.

ISSN: 2395-6968

Advances in thin film technology have revolutionized multiple sectors, driven by emerging materials, advanced deposition methods, and novel applications. 2D materials such as graphene and MoS₂, metal-oxide films, and organic polymers provide unique physical and chemical properties enabling high-performance, flexible, and sustainable devices. Deposition techniques like ALD, CVD, and solution-based methods allow precise control over film thickness, morphology, and composition, ensuring tailored functionality.

Thin films are instrumental in electronics, energy harvesting and storage, healthcare, and environmental monitoring. Challenges remain in scaling, cost reduction, material stability, and integration, but ongoing research promises transformative solutions. The development of hybrid, flexible, and degradable thin films will further expand applications, reduce environmental impact, and pave the way for innovative technological solutions. The potential impact of thin film technology on industry and research is immense, highlighting the critical need for continued interdisciplinary studies to harness its full capabilities.

Findings

- Rapid Material Innovation:Recent research shows that the shift from traditional materials like silicon and cadmium telluride (CdTe) to emerging compounds such as perovskites, copper indium gallium selenide (CIGS), and transition metal dichalcogenides (TMDs) has dramatically improved thin film performance, offering higher efficiency, flexibility, and tunability.
- **Perovskite Breakthroughs:**Hybrid organic-inorganic perovskites have achieved record power conversion efficiencies (PCE) above 25%, rivalling crystalline silicon cells. Their low-temperature, solution-based fabrication processes reduce manufacturing costs and support large-area deposition.
- Flexible Substrates and Lightweight Devices: Thin film deposition on flexible polymers, textiles, and metal foils enables applications in wearable electronics, portable solar cells, and flexible displays. This has led to a paradigm shift toward bendable, rollable, and conformable electronic devices.
- Advanced Deposition Techniques:Innovations in Atomic Layer Deposition (ALD),
 Pulsed Laser Deposition (PLD), and Chemical Vapor Deposition (CVD) have improved
 film uniformity, thickness control, and scalability, making thin film fabrication more
 reliable and commercially viable.

- Nano structuring for Enhanced Performance: The integration of nanostructures such as quantum dots, nanowires, and nanoparticles into thin films enhances optical absorption, electron mobility, and catalytic activity, expanding thin film applications across photovoltaics, sensors, and catalysis.
- Sustainability and Eco-friendly Processing: There is a growing focus on non-toxic, earth-abundant, and recyclable materials like zinc oxide (ZnO), copper sulfide (CuS), and tin-based perovskites, reducing dependency on scarce or hazardous elements like cadmium and lead.
- Thin Film Electronics and Optoelectronics: Thin films have become foundational in producing high-performance devices such as organic light-emitting diodes (OLEDs), thin film transistors (TFTs), and flexible photodetectors, marking a transition toward lightweight and energy-efficient consumer electronics.
- Energy Harvesting and Storage Applications: Thin film technology is central to nextgeneration solar cells, thermoelectric generators, and solid-state batteries. The integration of multifunctional thin films enhances both energy conversion efficiency and device stability.
- Surface Engineering and Interface Optimization: Studies reveal that surface passivation, interface modification, and defect control at nanoscale levels significantly improve carrier transport and device longevity, especially in perovskite and CIGS solar cells.
- Integration with Micro and Nano Systems: Thin films are increasingly integrated into Micro-Electro-Mechanical Systems (MEMS) and Nano-Electro-Mechanical Systems (NEMS), enabling high-precision sensors, actuators, and biomedical diagnostic devices.
- Computational Modelling and AI-driven Design: Machine learning and density functional theory (DFT) simulations have accelerated material discovery and process optimization, allowing predictive modelling of film growth, defect dynamics, and performance outcomes.
- Challenges in Long-term Stability: Despite rapid efficiency improvements, perovskite and organic thin films still face degradation due to moisture, oxygen, and UV exposure, highlighting a need for robust encapsulation and material engineering strategies.
- Scalability and Commercialization Barriers: While laboratory-scale advances are remarkable, challenges remain in transitioning to industrial-scale production due to cost, reproducibility, and environmental concerns during synthesis and deposition.

• **Interdisciplinary Collaboration:**The convergence of materials science, nanotechnology, chemistry, and electronics has proven essential to developing multifunctional thin films with diverse applications from renewable energy to medical imaging.

Suggestions

- Focus on Stable, Non-toxic Alternatives: Research should prioritize developing leadfree perovskites and alternative semiconductors (e.g., Sn-based, Bi-based materials) that maintain high efficiency while ensuring environmental safety.
- Optimization of Deposition Parameters: Enhanced control over film thickness, grain size, and crystallinity through optimized ALD and CVD processes can improve uniformity, yield, and reproducibility for commercial production.
- **Hybrid Material Systems:**Combining inorganic and organic components can merge the durability of inorganic films with the flexibility of organic layers, creating hybrid structures with improved mechanical and electrical properties.
- **Surface and Interface Engineering:**Further exploration into interface passivation layers, self-assembled monolayers, and graded junctions can minimize recombination losses and enhance charge transport in photovoltaic and optoelectronic devices.
- **Durability and Environmental Testing:**Long-term aging tests under real-world environmental conditions should become a standard protocol to assess film stability, encapsulation effectiveness, and performance retention.
- Scalable Manufacturing Approaches: Adoption of roll-to-roll processing, inkjet printing, and spray pyrolysis techniques can enable mass production of thin film devices while reducing fabrication costs.
- **Integration with Energy Systems:**Thin films should be designed for synergistic integration with storage systems (e.g., thin film batteries and supercapacitors) to create self-powered electronic modules and smart energy grids.
- **Computational Materials Design:** Expanding the use of AI-driven predictive tools can accelerate discovery of new thin film materials, optimize deposition parameters, and forecast degradation pathways before physical synthesis.
- Enhancement of Optical and Thermal Properties: Engineering thin film layers to optimize light trapping, anti-reflectivity, and heat dissipation can significantly increase device efficiency and reliability.

- Encapsulation and Protective Coatings: Research into advanced encapsulation materials such as graphene barriers and polymer nanocomposites can mitigate degradation and extend the operational life of thin film devices.
- **Circular Economy and Recycling:**Development of recycling methods for thin film modules can minimize e-waste and enhance sustainability in large-scale manufacturing.
- Cross-sectoral Collaboration: Collaboration among academia, industry, and government research bodies should be strengthened to translate laboratory innovations into commercially viable thin film products.
- **Standardization and Policy Support:**Establishing standardized testing protocols, quality benchmarks, and incentive policies can encourage investment and streamline commercialization of thin film technologies.
- Education and Skill Development: Promoting interdisciplinary training programs in thin film fabrication, nanomaterials, and sustainable electronics will build a skilled workforce capable of advancing this rapidly evolving field.

Conclusion

The continuous advancements in thin film technology have profoundly transformed modern materials science, offering innovative solutions across electronics, photovoltaics, energy storage, optics, and biomedical engineering. Emerging materials such as perovskites, transition metal dichalcogenides (TMDs), and organic—inorganic hybridshave expanded the functional capabilities of thin films, enabling higher efficiency, flexibility, and sustainability. Simultaneously, progress in deposition techniques like atomic layer deposition (ALD), pulsed laser deposition (PLD), and chemical vapor deposition (CVD) has enhanced the precision and uniformity of film growth at the nanoscale, optimizing their structural and electronic properties.

Moreover, the integration of nanotechnology and computational modelling has accelerated the design of next-generation thin films with tunable characteristics for specific industrial and environmental applications. These innovations are pivotal in addressing contemporary global challenges, including renewable energy generation, miniaturized electronics, and environmentally friendly coatings. However, issues such as large-scale production, material stability, and cost-effectiveness remain key areas requiring further exploration.

In essence, thin film technology stands at the intersection of science and innovation, driving the transition toward more efficient, sustainable, and multifunctional materials. Future research should focus on the synergistic combination of emerging materials and advanced

ICCN LODGE COCC

fabrication methods to achieve scalable, durable, and high-performance thin film systems. With continued interdisciplinary collaboration, thin film technology is poised to play a central role in shaping the future of sustainable technological development.

References:

- Crivello, C., Sevim, S., Graniel, O., Franco, C., Pané, S., Puigmartí-Luis, J., & Muñoz-Rojas, D. (2021). Advanced technologies for the fabrication of MOF thin films. *Materials Horizons*, 8(1), 168-178. https://doi.org/10.1039/D0MH00898B
- Mouloua, D., Kotbi, A., Deokar, G., Kaja, K., El Marssi, M., EL Khakani, M. A., &Jouiad, M. (2021). Recent progress in the synthesis of *MoS*₂ thin films for sensing, photovoltaic and plasmonic applications: A review. *Materials*, *14*(12), 3283. https://doi.org/10.3390/ma14123283
- Mirshojaeian Hosseini, M. J., & Nawrocki, R. A. (2021). A review of the progress of thinfilm transistors and their technologies for flexible electronics. *Micromachines*, 12(6), 655. https://doi.org/10.3390/mi12060655
- Surendran, M., Chen, H., Zhao, B., Thind, A. S., Singh, S., Orvis, T., Zhao, H., Han, J.-K., Htoon, H., Kawasaki, M., Mishra, R., & Ravichandran, J. (2021). Epitaxial thin films of a chalcogenide perovskite. *Chemistry of Materials*, *33*(18), 7457-7464. https://doi.org/10.1021/acs.chemmater.1c02202
- Ravi, V. K., Yu, S. H., Rajput, P. K., Nayak, C., Bhattacharyya, D., Chung, D. S., & Nag, A. (2021). Colloidal *BaZrS*₃ chalcogenide perovskite nanocrystals for thin film device fabrication. *Nanoscale*, *13*(3), 1616-1623. https://doi.org/10.1039/D0NR08078K
- Magnuson, M., Hultman, L., & Högberg, H. (2021). Review of transition-metal diboride thin films. *arXiv*. https://arxiv.org/abs/2112.14099arXiv
- Yu, Z., Wei, X., Zheng, Y., Hui, H., Bian, M., Dhole, S., Seo, J.-H., Sun, Y.-Y., Jia, Q., Zhang, S., Yang, S., & Zeng, H. (2021). *Chalcogenide perovskite BaZrS3 thin-film electronic and optoelectronic devices by low temperature processing.arXiv*. https://arxiv.org/abs/2102.10486arXiv
- Wu, T., Qin, Z., Wang, Y., et al. (2021). The main progress of perovskite solar cells in 2020-2021. *Nano-Micro Letters*, 13(1), 152. https://doi.org/10.1007/s40820-021-00672-w
- Abegunde, O. O., Akinlabi, E. T., Oladijo, O. P., Akinlabi, S., & Ude, A. U. (2019). Overview of thin film deposition techniques. AIMS Materials Science, 6(2), 174-199. https://doi.org/10.3934/matersci.2019.2.174
- Chandran, R., Panda, S. K., & Mallik, A. (2018). A short review on the advancements in electroplating of CuInGaSe₂ thin films. Materials for Renewable and Sustainable Energy, 7(6), 6. https://doi.org/10.1007/s40243-018-0112-1
- Prabaswara, A., Birch, J., Junaid, M., Serban, E. A., Hultman, L., & Hsiao, C.-L. (2020). Review of GaN thin film and nanorod growth using magnetron sputter epitaxy. Applied Sciences, 10(9), 3050. https://doi.org/10.3390/app10093050
- You, S. R., "Seung Rim", et al. (2020). Review of metal oxide semiconductors-based thinfilm transistors for point-of-care sensor applications. Journal of Information Display, 21(4), 203-210. https://doi.org/10.1080/15980316.2020.1714762

