Advances in Thin Film Technology: Emerging Materials, Methods, and Applications

Smt. Jyoti N Handral Research Scholar, Dept. of Physics, Shri JJT University, Rajasthan Jyotireddy7575@gmail.com

ISSN: 2395-6968

Dr.Ayub N.Chattarki Associate professor in Physics and Principal in Anjuman Arts, Science and Commerce & P.G. Studies in English, Vijayapur. 586102.

Abstract:

Page 47

Thin film technology has emerged as a cornerstone in modern materials science, driving innovations across electronics, optics. and biomedical applications. Recent advances focus on the development of novel materials, including organic-inorganic hybrids, perovskites, and two-dimensional (2D) materials, which offer enhanced electrical, optical, and mechanical properties. Parallelly, innovative fabrication techniquessuch as atomic layer deposition, chemical vapor deposition, spin coating, and pulsed laser depositionenable precise control over film thickness, morphology, and composition, optimizing thereby performance for specific applications. Emerging applications high-efficiency span

Impact Factor: 5.042

photovoltaics, flexible and wearable electronics, sensors, and energy storage devices, reflecting the versatility of thin films. This article reviews the latest material innovations, deposition strategies, and their functional applications, highlighting trends, challenges, and future research directions. By integrating materials science and process engineering, thin film technology continues to redefine the landscape of high-performance devices, paving the way sustainable and next-generation technological solutions.

Keywords: Thin Film Technology, **Emerging** Materials. Deposition Techniques, Nanostructured Coatings, Optoelectronic Applications.

